
PolySpace® Products for C++ 7
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

PolySpace® Products for C++ Getting Started Guide
© COPYRIGHT 1997–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2008 First printing Revised for Version 5.1 (Release 2008a)
October 2008 Second printing Revised for Version 6.0 (Release 2008b)
March 2009 Third printing Revised for Version 7.0 (Release 2009a)
September 2009 Online only Revised for Version 7.1 (Release 2009b)
March 2010 Online only Revised for Version 7.2 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction to PolySpace Products for
Verifying C++ Code

1
Product Overview . 1-2
Ensures Software Reliability . 1-2
Decreases Development Time . 1-2
Improves the Development Process 1-3

Product Components . 1-5

Installing PolySpace Products . 1-6
Finding the Installation Instructions 1-6
Obtaining Licenses for PolySpace® Client for C/C++ and
PolySpace® Server for C/C++ Products 1-6

Working with PolySpace Software 1-7
Basic Workflow . 1-7
The Workflow in This Guide . 1-8
Working with PolySpace Project Model Files 1-9

Learning More . 1-10
Product Help . 1-10
The MathWorks Online . 1-10

Related Products . 1-11
PolySpace Products for Verifying C Code 1-11
PolySpace Products for Verifying Ada Code 1-11
PolySpace Products for Linking to Models 1-11

iii

Setting Up a Project File

2
About This Tutorial . 2-2
Overview . 2-2
Example Files . 2-2

Creating a New Project . 2-3
What Is a Project? . 2-3
Preparing the Project Folders . 2-4
Opening the PolySpace Launcher . 2-5
Changing the Default Folder . 2-7
Creating a New Project to Verify a Class in the Training
C++ File . 2-9

Running a Verification

3
About This Tutorial . 3-2
Overview . 3-2
Before You Start . 3-3

Opening the Project . 3-4

Using the Launcher to Start a Verification That Runs
on a Server . 3-5
Starting the Verification . 3-5
Monitoring the Progress of the Verification 3-7
Downloading Results from the Server to the Client 3-10
Troubleshooting a Failed Verification 3-12

Using PolySpace In One Click to Start a Verification
That Runs on a Server . 3-15
Overview of PolySpace In One Click 3-15
Setting the Active Project . 3-15
Sending the Files to PolySpace Software 3-17

iv Contents

Using the Launcher to Start a Verification That Runs
on a Client . 3-25
Starting the Verification . 3-25
Monitoring the Progress of the Verification 3-26
Completing the Verification and Stopping the Launcher . . 3-27
Stopping the Verification Before It Completes 3-28

Reviewing Verification Results

4
About This Tutorial . 4-2
Overview . 4-2
Before You Start . 4-2

Opening the Viewer and the Verification Results 4-3
Opening the Viewer . 4-3
Selecting the Viewer Mode . 4-3
Opening the Results . 4-4

Exploring the Viewer Window . 4-5
Overview . 4-5
Reviewing the Procedural Entities View 4-7

Reviewing Results in Expert Mode 4-10
What Is Expert Mode? . 4-10
Switching to Expert Mode . 4-10
Reviewing Checks in Expert Mode . 4-10
Reviewing Additional Examples of Checks 4-16
Filtering the Types of Checks That You See 4-20

Reviewing Results in Assistant Mode 4-27
What Is Assistant Mode? . 4-27
Switching to Assistant Mode . 4-27
Selecting the Methodology and Criterion Level 4-28
Exploring Methodology for C++ . 4-28
Reviewing Checks . 4-30
Defining a Custom Methodology . 4-32

v

Generating Reports of Verification Results 4-34
PolySpace Report Generator Overview 4-34
Generating Verification Reports . 4-35

Checking Compliance with Coding Rules

5
About This Tutorial . 5-2
Overview . 5-2
Before You Start . 5-2

Setting Up Coding Rules Checking 5-3
Opening the Example Project . 5-3
Setting the JSF++ Checking Option 5-3
Creating a JSF++ Rules File . 5-4
Excluding Files from JSF++ Checking 5-7
Configuring Text and XML Editors 5-8
Saving the Project with a New Name 5-9

Running a Verification with Coding Rules Checking . . 5-10
Starting the Verification . 5-10
Examining the JSF Log . 5-11
Opening JSF Report . 5-12

Using a PolySpace Project Model File

6
About This Tutorial . 6-2
Overview . 6-2
Before You Start . 6-2

Creating a New PolySpace Project Model File 6-3
What Is a PolySpace Project Model File? 6-3
Creating the PolySpace Project Model File 6-3

vi Contents

Creating a Configuration File from a PolySpace Project
Model File . 6-9
Why You Must Have a Configuration File 6-9
Opening the Project Model File . 6-9
Entering Additional Required Information 6-10
Saving the Configuration File . 6-10

Deleting a Generic Target from the Preferences 6-12
Understanding the Generic Targets Preference 6-12
Deleting the Generic Target Added in This Tutorial 6-12

Index

vii

viii Contents

1

Introduction to PolySpace
Products for Verifying C++
Code

• “Product Overview” on page 1-2

• “Product Components” on page 1-5

• “Installing PolySpace Products” on page 1-6

• “Working with PolySpace Software” on page 1-7

• “Learning More” on page 1-10

• “Related Products” on page 1-11

1 Introduction to PolySpace® Products for Verifying C++ Code

Product Overview

In this section...

“Ensures Software Reliability” on page 1-2

“Decreases Development Time” on page 1-2

“Improves the Development Process” on page 1-3

Ensures Software Reliability
You can ensure the reliability of your C++ applications by using PolySpace®

verification software to prove code correctness and identify run-time errors.
Using advanced verification techniques, PolySpace software performs an
exhaustive verification of your source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

• Never has an error

• Always has an error

• Is unreachable

• Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

Decreases Development Time
Using PolySpace verification software reduces development time by
automating the verification process and helping you to efficiently review
verification results. You can use it at any point in the development process,
but using it during early coding phases allows you to find errors when it is
less costly to fix them.

You use PolySpace software to verify C++ source code prior to compilation.
To verify the source code, you set up verification parameters in a project, run

1-2

Product Overview

the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

• Green indicates code that never has an error.

• Red indicates code that always has an error.

• Gray indicates unreachable code (dead code).

• Orange indicates unproven code (code that might have an error).

This color-coding system helps you to identify errors quickly. You will spend
less time debugging because you can see the exact location of an error in the
source code. After you fix errors, you can easily run the verification again.

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improves the Development Process
PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

• An individual developer can find and fix run-time errors during the initial
coding phase.

• Quality assurance can check overall reliability of an application.

1-3

1 Introduction to PolySpace® Products for Verifying C++ Code

• Managers can monitor application reliability by generating reports from
the verification results.

1-4

Product Components

Product Components
The PolySpace products for verifying C++ code are combined with the
PolySpace products for verifying C code. These products are:

PolySpace® Client™ for C/C++
PolySpace® Server™ for C/C++

The user interface includes:

• The Launcher for setting up verification parameters and starting
verifications.

• The Viewer for reviewing verification results.

• The Spooler for managing verifications that run on a server and
downloading results from a server to a client.

1-5

1 Introduction to PolySpace® Products for Verifying C++ Code

Installing PolySpace Products

In this section...

“Finding the Installation Instructions” on page 1-6

“Obtaining Licenses for PolySpace® Client for C/C++ and PolySpace® Server
for C/C++ Products” on page 1-6

Finding the Installation Instructions
The tutorials in this guide require both PolySpace Client for C/C++ and
PolySpace Server for C/C++ products. Instructions for installing PolySpace
products are in the PolySpace Installation Guide. Before running PolySpace
products, you must also obtain and install the necessary licenses.

Obtaining Licenses for PolySpace Client for C/C++
and PolySpace Server for C/C++ Products
See “PolySpace License Installation” in the PolySpace Installation Guide for
information about obtaining and installing licenses for PolySpace products.

1-6

Working with PolySpace® Software

Working with PolySpace Software

In this section...

“Basic Workflow” on page 1-7

“The Workflow in This Guide” on page 1-8

“Working with PolySpace Project Model Files” on page 1-9

Basic Workflow
The basic workflow for using PolySpace software to verify C++ source code is:

In this workflow, you:

1 Use the Launcher to set up a project file.

2 Verify code on a server or client.

You can use the Launcher to start the verification or you can select files
from a Microsoft® Windows® folder and send them to thePolySpace software
for verification. For verifications that run on a server, you can use the
Spooler to manage the verifications and download the results to a client.

3 Use the Viewer to review verification results.

1-7

1 Introduction to PolySpace® Products for Verifying C++ Code

The Workflow in This Guide
The tutorials in this guide take you through the basic workflow, including the
different options for running verifications. The workflow that you will follow
in this guide is:

In this workflow, you will:

1 Create a new project that you can use for the other steps in the workflow.

This step is in the tutorial Chapter 2, “Setting Up a Project File”.

2 Verify a single class using demo C++ source code.

This step is in the tutorial Chapter 3, “Running a Verification”. In this
tutorial, you will verify the same class using three different methods for
running a verification. You will:

• Use the Launcher to start a verification that runs on a server.

• Use PolySpace In One Click to start a verification that runs on a server.

• Use the Launcher to start a verification that runs on a client.

3 Review the verification results.

This step is in the tutorial Chapter 4, “Reviewing Verification Results”.

1-8

Working with PolySpace® Software

Working with PolySpace Project Model Files
A PolySpace project model file is a project file that includes generic target
processor information. You can use this file to share project information,
but you cannot use it to run a verification. The tutorial Chapter 6, “Using a
PolySpace Project Model File” shows you how to work with PolySpace project
model files.

1-9

1 Introduction to PolySpace® Products for Verifying C++ Code

Learning More

In this section...

“Product Help” on page 1-10

“The MathWorks Online” on page 1-10

Product Help
To access the help that came with your installation, select Help > Help or
click the Help icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

The MathWorks Online
For additional information and support, see:

www.mathworks.com/products/polyspace

1-10

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html
http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

Related Products

Related Products

In this section...

“PolySpace Products for Verifying C Code” on page 1-11

“PolySpace Products for Verifying Ada Code” on page 1-11

“PolySpace Products for Linking to Models” on page 1-11

PolySpace Products for Verifying C Code
For information about PolySpace products that verify C code, see the following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code
For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models
For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

1-11

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products for Verifying C++ Code

1-12

2

Setting Up a Project File

• “About This Tutorial” on page 2-2

• “Creating a New Project” on page 2-3

2 Setting Up a Project File

About This Tutorial

In this section...

“Overview” on page 2-2

“Example Files” on page 2-2

Overview
You must have a project file before you can run a PolySpace verification of
your source code. In this tutorial, you will create a project that you can use to
run verifications in later tutorials.

Example Files
In this tutorial, you will verify the class MathUtils in the source file
training.cpp that comes with the PolySpace installation CD. You can learn
more about the files and folders required for this tutorial in “Preparing the
Project Folders” on page 2-4.

2-2

Creating a New Project

Creating a New Project

In this section...

“What Is a Project?” on page 2-3

“Preparing the Project Folders” on page 2-4

“Opening the PolySpace Launcher” on page 2-5

“Changing the Default Folder” on page 2-7

“Creating a New Project to Verify a Class in the Training C++ File” on
page 2-9

What Is a Project?
In PolySpace, a project is a named set of parameters for a verification of your
software’s source files. A project includes:

• The location of source files and include folders

• The location of a folder for verification results

• Analysis options

You can create your own project or use an existing one. You can create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target
processors.

PolySpace Project
Model

ppm Used to populate a
project with analysis
options, including
generic target
processors.

2-3

2 Setting Up a Project File

Project Type File Extension Description

Desktop dsk Obsolete. Used in
earlier versions of
PolySpace software for
running a verification
on a client computer.

In this tutorial, you create a new project and save it as a configuration file
(.cfg).

Preparing the Project Folders
Before you start verifying C++ code with PolySpace software, you must know
the locations of the C++ source file and the include files. You must also know
where you want to store the verification results.

For each project, you decide where to store source files and results. For
example, you can create a project folder and then create separate folders for
the source files, include files, and results within the project folder.

For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace_project.

2 Open polyspace_project, and create the following folders:

• sources

• includes

• results

3 Copy the file training.cpp from

Install_folder\Examples\Demo_Cpp_Long\sources

to

polyspace_project\sources

where Install_folder is the installation folder.

2-4

Creating a New Project

4 Copy the files training.h and zz_utils.h from

Install_folder\Examples\Demo_Cpp_Long\sources

to

polyspace_project\includes.

Opening the PolySpace Launcher
Use the PolySpace Launcher, a graphical user interface, to create a project
and start a verification.

To open the PolySpace Launcher:

• Double-click the PolySpace Launcher icon on your desktop.

• If you have only the PolySpace Client for C/C++ product installed on your
computer, skip this step. If you have both PolySpace Client for C/C++
and PolySpace Client for Ada products on your system, the PolySpace
Language Selection dialog box will appear.

Select PolySpace for C/C++ and click OK.

The PolySpace Launcher window opens.

2-5

2 Setting Up a Project File

�������
�	�
�����
����

�������
��������
��

�������
�	�
����
�����	�

��	���

�����������	

��	����
��������

����
��

The Launcher window has three main sections.

2-6

Creating a New Project

Use this
section...

For...

Upper-left Specifying:
• Source files

• Include folders

• Results folder

Upper-right Specifying analysis options

Lower Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Changing the Default Folder
PolySpace software allows you to specify the default folder that appears in the
directory browsers in dialog boxes. If you do not change the default folder, the
default folder is the installation folder. In this tutorial, you change the default
folder to the project folder that you created in “Preparing the Project Folders”
on page 2-4. Changing the default folder to the project folder makes it easier
for you to locate and specify source files and include folders in dialog boxes.

To change the default folder to the project folder:

1 Select Edit > Preferences.

The Preferences dialog box appears.

2-7

2 Setting Up a Project File

2 Select the Default folder tab.

3 Select Always use this specific folder if it is not already selected.

4 Enter or navigate to the project folder that you created earlier. In this
example, the project folder is C:\PolySpace\polyspace_project.

The Preferences dialog box should now look like the following.

2-8

Creating a New Project

5 Click OK to apply the changes and close the dialog box.

Creating a New Project to Verify a Class in the
Training C++ File
You must have a project, saved with file type .cfg, to run a verification. In
this part of the tutorial, you create a new project to verify training.cpp.

You create a new project by:

• “Opening a New project” on page 2-10

• “Specifying the Source Files, Include Folders, and Results Folder” on page
2-11

• “Specifying the Analysis Options” on page 2-14

• “Saving the Project” on page 2-17

2-9

2 Setting Up a Project File

Opening a New project
To open a new project for verifying training.cpp:

1 Select File > New Project.

The Choose the language dialog box appears:

2 Select C++, then click OK.

The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

2-10

Creating a New Project

Specifying the Source Files, Include Folders, and Results Folder
To specify the source files, include folders, and results folder for the
verification of training.cpp:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

The Please select a file dialog box appears.

2-11

2 Setting Up a Project File

2 The project folder polyspace_project should appear in the Look in
drop-down box. If it does not, navigate to that folder.

3 Double-click the sources folder.

4 Select the file training.cpp and then click the green down arrow button
in the Source files section.

The path for training.cpp appears in the source files list.

2-12

Creating a New Project

Tip You can also drag files from an open folder directly to the source files
list or the folders to include list.

5 Navigate back to the polyspace_project folder.

Select the folder includes, then click the green down arrow button in the
Folders to include section.

The path for the folder appears in the list of folders to include.

6 Navigate to the folder Install_folder\Verifier\include.

7 Select the folder include-linux, then click the green down arrow button
in the Folders to include section.

Note This tutorial uses a Linux OS target, therefore you must include
the Linux library files. When verifying your code, you should include the
standard headers for your compiler.

8 Click OK to apply the changes and close the dialog box.

9 In Results Folder, specify the folder for the verification results. Enter the
path for the results folder that you created earlier. In this example, the
results folder is C:\PolySpace\polyspace_project\results.

The files section in the upper left of the Launcher window now looks like this.

2-13

2 Setting Up a Project File

Specifying the Analysis Options
The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software
uses during the verification process. For more information about analysis
options, see “Options Description” in the PolySpace Products for C++
Reference.

To specify the analysis options for this tutorial:

2-14

Creating a New Project

1 In the General section, change the Session identifier to
Training_Project.

Note The session identifier cannot contain spaces.

2 Expand the PolySpace inner settings section and select the Generate a
main using a given class check box. This enables the -class-analyzer
option and allows you to specify the class you want to verify. Expand the
Generate a main using a given class section and type in MathUtils as
the class name.

3 Expand the Target/Compilation section. Because you included Linux
header files for this project, you must select a Linux® OS target. This
will provide PolySpace with a set of predefined compilation flags that are
known to be default or implicit compile options for the target OS. Select
Linux from the drop-down menu next to Operating system target for
PolySpace stubs.

4 Keep the default values for all other options.

The analysis options will now look like this.

2-15

2 Setting Up a Project File

2-16

Creating a New Project

Note You can also select the -class-only option when you want to verify a
single class. When this option is applied, even if you add other classes and
function member definitions, PolySpace will stub them. This accelerates your
verification process and allows you to check robustness issues for a single
class. For the purposes of this tutorial, it is not necessary to select this option
because the class MathUtils does not depend on any other classes.

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

2-17

2 Setting Up a Project File

2 In Look in, leave the default folder, polyspace_project.

3 In Session identifier, enter training.

4 In Files of type, leave the default *.cfg. You must have a project file
with type cfg to run a verification.

Note You can also run a verification with a project file of type dsk. Older
versions of PolySpace software created files with type dsk for use with
verifications running on a desktop PC. For more information about the dsk
file type, see “What Is a Project?” on page 2-3.

5 Click OK to save the project and close the dialog box.

2-18

3

Running a Verification

• “About This Tutorial” on page 3-2

• “Opening the Project” on page 3-4

• “Using the Launcher to Start a Verification That Runs on a Server” on
page 3-5

• “Using PolySpace In One Click to Start a Verification That Runs on a
Server” on page 3-15

• “Using the Launcher to Start a Verification That Runs on a Client” on
page 3-25

3 Running a Verification

About This Tutorial

In this section...

“Overview” on page 3-2

“Before You Start” on page 3-3

Overview
Once you have created the project training.cfg as described in “Creating a
New Project” on page 2-3, you can run the verification.

You can run a verification on a server or a client.

Use... For...

Server • Best performance

• Large files (more than 800 lines of code including comments)

• Multitasking

Client • An alternative to the server when the server is busy

• Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

You can start a verification using the Launcher or using PolySpace In One
Click. With either method, the verification can run on a server or a client.

3-2

About This Tutorial

Use... For...

Launcher A basic way to start a verification.

You specify the source files in the project file.
With the project file open, you click a button to
start the verification.

PolySpace In One Click A convenient way to start the verification of
several files which use the same verification
options.

Once you specify the project file containing the
verification options, you specify the source files
by selecting them from a Microsoft Windows
folder. You start the verification by sending the
selected files to PolySpace software.

In this tutorial, you learn how to run a verification on a server and on a
client, and you learn how to start a verification using the Launcher and
using PolySpace In One Click. You verify the class MathUtils in the file
training.cpp three times using a different method each time. You use:

1 The Launcher to start a verification that runs on a server.

2 PolySpace In One Click to start a verification that runs on a server.

3 The Launcher to start a verification that runs on a client.

Each verification stores the same results in polyspace_project\results.
You review these results in the tutorial Chapter 4, “Reviewing Verification
Results”.

Before You Start
Before you start this tutorial, you must complete Chapter 2, “Setting Up a
Project File”. You use the folders and project file, training.cfg, from that
tutorial to run the verifications.

3-3

3 Running a Verification

Opening the Project
To run a verification, you must have an open project file. For this tutorial, you
use the project file training.cfg that you created in Chapter 2, “Setting Up
a Project File”. Open training.cfg if it is not already open.

To open training.cfg:

1 If the PolySpace Launcher is not already open, open it by double-clicking
the PolySpace Launcher icon.

2 Select File > Open project.

The Please select a file dialog box opens.

3 In Look in, navigate to polyspace_project.

4 Select training.cfg.

5 Click Open to open the file and close the dialog box.

3-4

Using the Launcher to Start a Verification That Runs on a Server

Using the Launcher to Start a Verification That Runs on
a Server

In this section...

“Starting the Verification” on page 3-5

“Monitoring the Progress of the Verification” on page 3-7

“Downloading Results from the Server to the Client” on page 3-10

“Troubleshooting a Failed Verification” on page 3-12

Starting the Verification
In this part of the tutorial, you run the verification on a server.

To start a verification that runs on a server:

1 Select the Send to PolySpace Server check box next to the Start button
in the middle of the Launcher window.

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

2 Click Start.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-12.

The verification has three main phases:

3-5

3 Running a Verification

a Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C++ compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

b Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
“Generate a Main Using a Given Class” in the PolySpace Products for
C++ Reference.

c Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase finishes:

• A message dialog box tells you that the verification is completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

• A message in the log area tells you that the verification was transferred
to the server and gives you the identification number (Analysis ID) for
the verification. For this verification, the identification number is 2.

3 When you see the message Verification process completed, click OK
to close the message dialog box.

4 Stop the Launcher by clicking File > Quit.

3-6

Using the Launcher to Start a Verification That Runs on a Server

Monitoring the Progress of the Verification
You monitor the progress of the verification using the PolySpace Queue
Manager (also called the Spooler).

To monitor the verification of Example_Project:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon in the PolySpace Launcher toolbar.

2 Point anywhere in the row for ID 1.

3 Right-click to open the context menu for this verification.

3-7

3 Running a Verification

4 Select View log file.

A window opens displaying the last one-hundred lines of the verification.

5 Press Enter to close the window.

3-8

Using the Launcher to Start a Verification That Runs on a Server

6 Select Follow Progress from the context menu.

A Launcher window labeled PolySpace follow remote analysis
progress for CPP appears.

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the
verification. The information appears in the log display area at the bottom
of the window. The full log displays by default. It display messages, errors,
and statistics for all phases of the verification. You can search the full log

3-9

3 Running a Verification

by entering a search term in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

7 Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

8 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

9 Click the refresh button

to update the stats log display as the verification progresses.

10 Select File > Quit to close the progress window.

11 Wait for the verification to complete.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

Downloading Results from the Server to the Client
At the end of the verification, the results are on the server. To download the
results to your client:

1 In the PolySpace Queue Manager Interface, select Download Results
from the context menu for the verification.

3-10

Using the Launcher to Start a Verification That Runs on a Server

The Browse For Folder dialog box appears with the
polyspace_project\results folder selected.

2 Click OK to close the dialog box.

A dialog box appears telling you that the download is complete and asking
if you want to open the PolySpace Viewer.

3 Click No.

4 Select Remove From Queue from the context menu.

3-11

3 Running a Verification

A dialog box appears asking you to confirm that you want to remove the
verification from the queue.

5 Click Yes.

Note

• To download the results and remove the verification from the queue,
select Download Results And Remove From Queue from the context
menu.

• If you download results before the verification completes, you get partial
results and the verification continues.

6 Select Operations > Exit to close the PolySpace Queue Manager
Interface.

Once the results are on your client, you can review them using the PolySpace
Viewer. You review the results from the verification in Chapter 4, “Reviewing
Verification Results”.

Troubleshooting a Failed Verification
When you see a message that the verification failed, it indicates that
PolySpace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements
The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

3-12

Using the Launcher to Start a Verification That Runs on a Server

www.mathworks.com/products/polyspaceclientc/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.

You can:

• Upgrade your computer to meet the minimal requirements.

• Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files
If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

include.h: No such file or folder

For information on how to specify the location of include files, see “Creating a
New Project to Verify a Class in the Training C++ File” on page 2-9.

PolySpace Software Cannot Find the Server
If you see the following message in the log, PolySpace software cannot find
the server.

Error: Unknown host :

PolySpace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

3-13

http://www.mathworks.com/products/polyspaceclientc/requirements.html

3 Running a Verification

By default, PolySpace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the PolySpace Installation Guide.

3-14

Using PolySpace® In One Click to Start a Verification That Runs on a Server

Using PolySpace In One Click to Start a Verification That
Runs on a Server

In this section...

“Overview of PolySpace In One Click” on page 3-15

“Setting the Active Project” on page 3-15

“Sending the Files to PolySpace Software” on page 3-17

Overview of PolySpace In One Click
In a Microsoft Windows environment, PolySpace software provides a
convenient way to streamline your work when you want to verify several
files using the same set of options. Once you have set up a project file that
has the options you want, you designate that project as the active project,
and then send the source files to PolySpace software for verification. You do
not have to update the project with source file information. This process is
called PolySpace In One Click.

In this part of the tutorial, using PolySpace In One Click, you learn how to:

1 Set the active project.

2 Send files to PolySpace software for verification.

Setting the Active Project
The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results folder from
the project.

To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

3-15

3 Running a Verification

The context menu appears.

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

3-16

Using PolySpace® In One Click to Start a Verification That Runs on a Server

3 In Look in, navigate to polyspace_project.

4 Select training.cfg.

5 Click Open to apply the changes and close the dialog box.

Sending the Files to PolySpace Software
You can send several files to PolySpace software for verification. For this
tutorial, you send one file, training.cpp.

To send training.cpp to PolySpace software for verification:

1 Navigate to the folder polyspace_project\sources.

3-17

3 Running a Verification

2 Right-click the file training.cpp.

The context menu appears.

3 Select Send To > PolySpace.

3-18

Using PolySpace® In One Click to Start a Verification That Runs on a Server

The PolySpace basic settings dialog box appears.

3-19

3 Running a Verification

4 Make sure that Results folder is polyspace_project\results.

5 You will see that there are three different tabs in the Parameters section
to assist you in setting up the type of verification you want to run. In this

3-20

Using PolySpace® In One Click to Start a Verification That Runs on a Server

tutorial, you are verifying a single class, so you want to use the Class
analysis tab to set up the analysis parameters. Under the Class analysis
tab, type MathUtils in the box labeled Class. You will see that the Class
only checkbox is selected by default. This activates the -class-only option
in PolySpace. For the purposes of this tutorial, it does not matter whether
or not this option is applied because the class MathUtils does not depend
on any other classes.

6 Select the Send to PolySpace Server option if it is not already selected.

7 Leave the default values for the other parameters.

The PolySpace basic settings window should now look like this.

3-21

3 Running a Verification

Click Start.

The verification log appears.

3-22

Using PolySpace® In One Click to Start a Verification That Runs on a Server

The compile phase of the verification runs on the client. When the compile
phase completes:

• You see the message:

End of PolySpace Verifier analysis

• A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For this verification, the identification number is 1.

• Monitor the verification using the Spooler. For information on using the
Spooler to monitor a verification on a server, see “Monitoring the Progress
of the Verification” on page 3-7.

3-23

3 Running a Verification

• When the verification completes, download the results to
polyspace_project\results. For information on downloading results
from a server to a client, see “Downloading Results from the Server to the
Client” on page 3-10

You review the results in Chapter 4, “Reviewing Verification Results”.

3-24

Using the Launcher to Start a Verification That Runs on a Client

Using the Launcher to Start a Verification That Runs on a
Client

In this section...

“Starting the Verification” on page 3-25

“Monitoring the Progress of the Verification” on page 3-26

“Completing the Verification and Stopping the Launcher” on page 3-27

“Stopping the Verification Before It Completes” on page 3-28

Starting the Verification
For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

To start a verification that runs on a client:

1 Open the Launcher if it is not already open.

2 Open the project file training.cfg if it is not already open.

For information about opening a project file, see “Opening the Project”
on page 3-4.

3 Make sure that the Send to PolySpace Server check box is clear.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

5 Click the Start button.

3-25

3 Running a Verification

6 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Troubleshooting a Failed Verification” on page 3-12.

Monitoring the Progress of the Verification
You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the
log display area at the bottom of the Launcher window. Follow the next steps
to view the logs:

1 The compile log displays by default.

3-26

Using the Launcher to Start a Verification That Runs on a Client

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

3 Click the refresh button

to update the display as the verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Completing the Verification and Stopping the
Launcher
When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.
For this tutorial, do not open the Viewer at this point.

To indicate that you do not want to open the Viewer:

• Click Cancel.

You can also open the Viewer from the Launcher toolbar, but for this tutorial,
you do not do this. For this tutorial, close the Launcher.

3-27

3 Running a Verification

To close the Launcher:

• Select File > Quit.

In the tutorial Chapter 4, “Reviewing Verification Results”, you open the
Viewer and review the verification results.

Stopping the Verification Before It Completes
You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the
verification starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

A warning dialog box appears.

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

3 Click OK to close the Message dialog box.

3-28

Using the Launcher to Start a Verification That Runs on a Client

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

3-29

3 Running a Verification

3-30

4

Reviewing Verification
Results

• “About This Tutorial” on page 4-2

• “Opening the Viewer and the Verification Results” on page 4-3

• “Exploring the Viewer Window” on page 4-5

• “Reviewing Results in Expert Mode” on page 4-10

• “Reviewing Results in Assistant Mode” on page 4-27

• “Generating Reports of Verification Results” on page 4-34

4 Reviewing Verification Results

About This Tutorial

In this section...

“Overview” on page 4-2

“Before You Start” on page 4-2

Overview
In the previous tutorial, Chapter 3, “Running a Verification” , you completed a
verification of the class MathUtils in the file training.cpp. In this tutorial,
you explore the verification results.

PolySpace Client for C/C++ provides a graphical user interface, called the
Viewer, that you use to review results. In this tutorial, you learn:

1 How to use the Viewer, including how to:

• Open the Viewer and open verification results.

• Select the Viewer mode.

• Explore results in expert mode.

• Explore results in assistant mode.

• Generate reports.

2 How to interpret the color-coding that PolySpace software uses to identify
the severity of an error.

3 How to find the location of an error in the source code.

Before You Start
Before starting this tutorial, complete the tutorial Chapter 3, “Running a
Verification”. In this tutorial, you use the verification results stored in this
file:

polyspace_project\results\RTE_px_O2_Training_Project_LAST_RESULTS.rte.

4-2

Opening the Viewer and the Verification Results

Opening the Viewer and the Verification Results

In this section...

“Opening the Viewer” on page 4-3

“Selecting the Viewer Mode” on page 4-3

“Opening the Results” on page 4-4

Opening the Viewer
You use the Viewer to review verification results. Open the Viewer if it is
not already open.

To open the Viewer:

• Double-click the PolySpace Viewer icon:

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

Selecting the Viewer Mode
You can review verification results in expert mode or assistant mode:

• In expert mode, you decide how you review the results.

• In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking a button in the Viewer
toolbar. For this part of the tutorial, the Viewer should be in expert mode. If
the Viewer is in expert mode, the switch mode button in the toolbar displays
Assistant.

4-3

4 Reviewing Verification Results

If the Viewer is not in expert mode, click the mode button to switch to expert
mode.

You learn more about expert and assistant modes later in this tutorial.

Opening the Results
To open the verification results:

1 Select File > Open.

2 In the Please select a file dialog box, navigate
to polyspace_project\results and select the file
RTE_px_O2_Training_Project_LAST_RESULTS.rte.

3 Click the Open button.

The results appear in the Viewer window.

Note The file RTE_px_O2_Training_Project_LAST_RESULTS.rte represents
the verification with the highest level of precision. The lower level results
files that you see in the polyspace_project\results folder represent lower
precision verifications.

4-4

Exploring the Viewer Window

Exploring the Viewer Window

In this section...

“Overview” on page 4-5

“Reviewing the Procedural Entities View” on page 4-7

Overview
The PolySpace Viewer window looks like this.

4-5

4 Reviewing Verification Results

����	������������������� ��
��������������

����������
����

���������

�	����������

������
��
����

��

����
����

The appearance of the Viewer toolbar depends on the Viewer mode. Because
the Viewer is in expert mode, the expert mode toolbar is displayed.

4-6

Exploring the Viewer Window

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The
following table describes these views.

This view... Displays...

Procedural entities view (lower left) List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right) Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right) Details about the selected check

Variables view Information about the global
variables declared in the source code

Note The file that you use in
this tutorial does not have global
variables.

Call tree view Tree structure of function calls

You can resize or hide any of these sections. You learn more about the Viewer
window later in this tutorial.

Reviewing the Procedural Entities View
The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (Run-Time

4-7

4 Reviewing Verification Results

Error) view. When you first open the results file from the verification of
training.cpp, the procedural entities view looks like this.

The file training.cpp is red because its contains a run-time error. PolySpace
software assigns a file the color of the most severe error found in that file.
The first column of the table is the procedural entity (the file or function).
The following table describes some of the other columns in the procedural
entities view.

Column
Heading

Indicates

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

4-8

Exploring the Viewer Window

Tip If you see three dots in place of a heading, , resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

Note You can select which columns appear in the procedural entities view
by editing the preferences.

What you select in the procedural entities view determines what displays in
the other views. In the following examples, you learn how to use the views
and how they interact.

4-9

4 Reviewing Verification Results

Reviewing Results in Expert Mode

In this section...

“What Is Expert Mode?” on page 4-10

“Switching to Expert Mode” on page 4-10

“Reviewing Checks in Expert Mode” on page 4-10

“Reviewing Additional Examples of Checks” on page 4-16

“Filtering the Types of Checks That You See” on page 4-20

What Is Expert Mode?
In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode
If the Viewer is in expert mode, the switch mode button displays Assistant.
If the Viewer is in assistant mode, the switch mode button displays Expert.
To switch from assistant to expert mode:

• Click the Viewer mode button:

The Viewer window toolbar displays buttons and menus specific to expert
mode.

Reviewing Checks in Expert Mode
In this part of the tutorial, you learn how to use the Viewer window views to
examine checks from a verification. This part of the tutorial covers:

• “Selecting a Check to Review” on page 4-11

• “Displaying the Calling Sequence” on page 4-12

• “Tracking Review Progress” on page 4-13

4-10

Reviewing Results in Expert Mode

• “Tracking Reviewed Checks in Procedural Entities View” on page 4-15

Selecting a Check to Review
In the procedural entities view, training.cpp is red, indicating that this file
has at least one red check. To review a red check in training.cpp:

1 In the procedural entities section of the window, expand training.cpp.

2 Expand the red procedure MathUtils::Pointer_Arithmetic().

A color-coded list of the checks performed on
MathUtils::Pointer_Arithmetic() appears:

Each item in the list of checks has an acronym that identifies the type
of check and a number. For example, in IDP.9, IDP stands for Illegal
Dereferenced Pointer. For more information about different types of checks,
see “Check Descriptions” in the PolySpace Products for C++ Reference.

3 Click on the red IDP.9.

The source code view displays the section of source code where this error
occurs.

4-11

4 Reviewing Verification Results

4 At line 72 of the code, click on the red code.

An error message box appears indicating that when the pointer p is
dereferenced, it is outside of its bounds. At line 66, p points to the start of
tab which has 100 elements. The for loop starting at line 68 initializes
the elements of tab to 0. This for loop leaves p pointing to the location
after the last element of tab.

Displaying the Calling Sequence
You can display the calling sequence that leads to the code associated
with a check. To see the calling sequence for the red IDP.9 check in
MathUtils::Pointer_Arithmetic():

1 Expand MathUtils::Pointer_Arithmetic().

2 Click the red IDP.9.

3 Click the call graph button in the toolbar.

4-12

Reviewing Results in Expert Mode

A window displays the call graph.

The code associated with IDP.9 is in MathUtils::Pointer_Arithmetic.
The generated main function calls MathUtils::Pointer_Arithmetic.

Tracking Review Progress
You can keep track of the checks that you have reviewed by marking
them. To mark that you have reviewed the red IDP.9 check in
MathUtils::Pointer_Arithmetic():

1 Expand MathUtils::Pointer_Arithmetic().

2 Click the red IDP.9.

A table with statistics about the review progress for that category and
severity of error appear in the upper-left part of the window.

4-13

4 Reviewing Verification Results

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to the total number of checks that have the same color and category as the
current check. In this example, it displays the ratio of reviewed red IDP
checks to total red IDP errors in the project.

The second row displays the ratio of reviewed checks to total checks that
have the same color as the current check. In this example, this is the ratio
of red errors reviewed to total red errors in the project. The third row
displays the ratio of the number of green checks to the total number of
checks, providing an indicator of the reliability of the software.

Information about the current check (the red IDP.9) appears in the
upper-right part of the Viewer window.

3 After you review the check, select an acronym to describe the check in the
Predefined acronyms menu:

• NOW – Bug to fix now.

• NXT – Bug to fix in Next Release

4-14

Reviewing Results in Expert Mode

• ROB – Robustness Issue

• DEF – Defensive Code

• MIN – Minor quality issue

• OTH – Other

Note You can also define your own acronyms. See “Defining Custom
Acronyms ”.

4 In the comment box, enter additional information about the check.

5 Select the check box to indicate that you have reviewed this check.

The Coding review progress part of the window updates the ratios of
errors reviewed to total errors.

Tracking Reviewed Checks in Procedural Entities View
The Procedural entities view in the Viewer displays which checks you have
reviewed and the predefined acronym you used to describe each check.

4-15

4 Reviewing Verification Results

Tip If you do not see the Reviewed column, resize the Procedural entities
view to display the column. If it does not appear, right click the Procedural
entities column heading and select Reviewed.

You can select the Reviewed check box to mark a check as reviewed.
Selecting this check box also automatically:

• Selects the check box for that check in the current check view (upper-right
part of the window).

• Updates the counts in the coding review progress view (upper-left part
of the window).

Reviewing Additional Examples of Checks
In this part of the tutorial, you learn about other types and categories of
errors by reviewing the following examples in training.cpp:

4-16

Reviewing Results in Expert Mode

• “Example: Unreachable Code” on page 4-17

• “Example: A Function with No Errors” on page 4-18

• “Example: Division by Zero” on page 4-19

Example: Unreachable Code
Unreachable code is code that never executes. PolySpace software displays
unreachable code in gray. In the following steps, you will look at an example
of unreachable code.

1 In Procedural Entities, click on Square::Unreachable_Code().

The source code for this function displays in the source code view.

4-17

4 Reviewing Verification Results

2 Examine the source code.

At line 174, the code x = x +1 is never reached because the condition x
< 0 is always false.

Note that in the Procedural Entities view all public and protected member
functions for the classes RTE and Square are marked as unreachable code.
This is because the analysis results are from the single class verification of
MathUtils which does not depend on any other classes.

Example: A Function with No Errors
In the following example, PolySpace software determines, in code with a large
number of iterations, that a loop terminates and a variable does not overflow:

1 In Procedural entities, click on the green
MathUtils::Non_Infinite_Loop() function.

The source code for this function is displayed in the source code view.

4-18

Reviewing Results in Expert Mode

2 Examine the source code. The variable x never overflows because the while
loop at line 44 terminates before x can overflow.

Example: Division by Zero
In the following example, PolySpace software detects a potential division
by zero:

1 In Procedural entities, expand MathUtils::Recursion().

The source code for this function is displayed in the source code view.

4-19

4 Reviewing Verification Results

2 Examine the MathUtils::Recursion() function.

When Recursion() is called with depth less than zero, the code at line
109 will result in division by zero. The orange color indicates that this is a
potential error (depending on the value of depth).

Filtering the Types of Checks That You See
You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined

4-20

Reviewing Results in Expert Mode

composite filters, a custom composite filter, and several individual filters. You
learn about filters in the following sections:

• “Using Composite Filters” on page 4-21

• “Using the Custom Filter” on page 4-22

• “Using Individual Filters” on page 4-25

Using Composite Filters
Composite filters combine individual filters, allowing you to display or hide
groups of checks.

Use this filter... To...

Alpha Display all checks

Beta Hide NIV, NIV local, NIP, Scalar
OVFL, and Float OVFL checks

Gamma Display red and gray checks

User def Hide checks as defined in a custom
filter that you can modify

The default filter is Custom. You learn more about the Custom filter in “Using
the Custom Filter” on page 4-22. You can select a composite filter from the
filter menu.

To learn how the composite filters affect the display of checks:

4-21

4 Reviewing Verification Results

1 Expand the function MathUtils::Pointer_Arithmetic() in Procedural
Entities. Select Alpha from the filter menu to display all the checks for
MathUtils::Pointer_Arithmetic().

MathUtils::Pointer_Arithmetic() has twenty-four checks: twenty-two
green, one red, and one orange.

2 Select Beta from the filter menu to hide the NIV local, SCAL OVFL, NIV
other, NIP, and FLOAT OVFL checks.

Now, only eleven checks are visible: four EXC, four IDP, and three NNT.

3 Select Alpha to display all checks again.

4 Select Gamma to display only the red and gray checks.

Now, only one check is visible: the red IDP.

Using the Custom Filter
The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By

4-22

Reviewing Results in Expert Mode

default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks as shown in the following figure.

To modify the custom filter:

1 Select Custom from the composite filters menu.

2 Select Edit > Custom filters.

The Custom filter setup dialog box appears.

4-23

4 Reviewing Verification Results

3 Clear the filters for the checks that you want to display. For example, if you
clear the Out of Bound Array Index Checks box, these checks display.

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.

5 Click OK to apply the changes and close the dialog box.

4-24

Reviewing Results in Expert Mode

PolySpace software saves the custom filter definition in the Viewer
preferences.

Using Individual Filters
You can use an individual filter to display or hide a given check category.
When a filter is enabled, that check category is not displayed. For example,
when the VOA filter is enabled, VOA checks are not displayed. When the
VOA filter is disabled, VOA checks are displayed. You can also filter by check
color. To enable or disable an individual filter, click the toggle button for that
filter on the toolbar.

Tip When you mouse over a filter button, a tooltip tells you which filter the
button is for and whether the filter is currently enabled or disabled.

To learn how an individual filter affects the display of checks:

1 Expand MathUtils::Close_To_Zero().

2 Select Alpha from the composite filters menu to display all checks.

3 Click the NIV local filter button

to hide the NIVL checks for MathUtils::Close_To_Zero().

4-25

4 Reviewing Verification Results

4 Click the NIV local filter button again to display the NIVL checks.

5 Now click the green checks filter button

to hide the green checks.

Note When you filter a check category, some red checks within that category
are still displayed. For example, if you filter IDP checks, IDP.9 is still
displayed under MathUtils::Pointer_Arithmetic().

4-26

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 4-27

“Switching to Assistant Mode” on page 4-27

“Selecting the Methodology and Criterion Level” on page 4-28

“Exploring Methodology for C++” on page 4-28

“Reviewing Checks” on page 4-30

“Defining a Custom Methodology” on page 4-32

What Is Assistant Mode?
In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
to you in this order:

1 All red checks

2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks according to the selected methodology and criterion level

You will learn about methodologies and criterion levels in “Selecting the
Methodology and Criterion Level” on page 4-28.

Switching to Assistant Mode
If the Viewer is in assistant mode, the switch mode button displays Expert.
If the Viewer is in expert mode, the switch mode button displays Assistant.
To switch from expert mode to assistant mode:

• Click the Viewer’s switch mode button .

The Viewer window toolbar displays controls specific to assistant mode.

4-27

4 Reviewing Verification Results

The controls for assistant mode include:

• A menu for selecting the review methodology for orange checks

• A slider for selecting the criterion level within that methodology

• A check box for skipping gray checks

• Arrows for navigating through the reviews

Selecting the Methodology and Criterion Level
A methodology is a named configuration that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology
has three criterion levels. Each level specifies the number of orange checks
for a given category. The levels correspond to different development phases
that have different review requirements. To select the methodology and level
for this tutorial:

1 Select Methodology for C++ from the methodology menu.

2 If the level slider is not already at 1, move the slider to level 1.

Exploring Methodology for C++
In this part of the tutorial, you examine the configuration for Methodology
for C++. To begin:

1 Select Edit > Preferences.

4-28

Reviewing Results in Assistant Mode

The Preferences PolySpace Viewer dialog box appears.

2 Select the Assistant configuration tab.

The configuration for Methodology for C++ appears.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (only in assistant mode).

4-29

4 Reviewing Verification Results

For the configuration Methodology for C++, the criterion names are:

Criterion Name in the Tooltip

1 Fresh code

2 Unit tested

3 Final version

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds

2 All blocks of gray checks (the first check in each unreachable function)

Note You can skip gray checks by selecting the Skip gray checks check
box in the toolbar.

3 Orange checks according to the selected methodology and criterion level

4-30

Reviewing Results in Assistant Mode

Earlier in this tutorial, you selected Methodology for C++, criterion l. In this
part of the tutorial, you continue to review the checks for training.cpp using
this methodology and criterion level. To navigate through these checks:

1 In the procedural entities view (lower left), MathUtils::Recursion(int*)
is expanded and ZDV.9 is displayed as the current check.

If the Viewer is displaying the message “No check currently selected” in the
upper-right portion of the window, then you will need to click the forward

arrow to go to the first check.

The source code view (lower right) displays the source for this check and
the current check view (upper right) displays information about this check.

4-31

4 Reviewing Verification Results

Note You can display the calling sequence and track review progress as
you did in “Reviewing Results in Expert Mode” on page 4-10.

2 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box appears asking if you want to start again
from the first check.

3 Click No.

Defining a Custom Methodology
You cannot change the predefined methodologies, such as Methodology for
C++, but you can define your own methodology. In this part of the tutorial,
you learn how to create and use your own methodology.

To define your custom methodology:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box appears.

2 Select the Assistant configuration tab.

3 Select Add a set from the menu in Configuration set.

4 In the Create a new set dialog box, enter My methodology for the name
and click Enter to close the dialog box.

4-32

Reviewing Results in Assistant Mode

5 Under the Criterion 1 column, enter the number 1 next to IDP. This
tells PolySpace software to select up to one orange IDP for review. Poly
Space™ will not select any other orange checks for review because you are
leaving all of the other fields blank. This does not affect the red and gray
checks: the software will still present all red checks and the first check in
each unreachable function for review.

6 Click OK to save the methodology and close the dialog box.

To use My methodology:

1 Select My methodology from the methodology menu.

2 If the level slider is not already at 1, move the slider to level 1.

3 Click the forward arrow to review the checks.

With this methodology at criterion 1, you review the orange IDP.3 check.
You did not review IDP.3 earlier in the tutorial because the number of
orange IDP checks in Methodology for C++ criterion level 1 is zero.

4 End PolySpace Viewer by selecting File > Quit.

4-33

4 Reviewing Verification Results

Generating Reports of Verification Results

In this section...

“PolySpace Report Generator Overview” on page 4-34

“Generating Verification Reports” on page 4-35

PolySpace Report Generator Overview
The PolySpace Report Generator allows you to generate reports about your
verification results, using pre-defined report templates.

The PolySpace Report Generator provides the following report templates:

• Coding Rules Report – Provides information about compliance with
JSF Coding Rules, as well as PolySpace configuration settings used for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
PolySpace configuration settings used for the verification.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and PolySpace configuration settings used
for the verification.

The PolySpace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• WORD

• XML

4-34

Generating Reports of Verification Results

Note WORD format is not available on UNIX platforms, RTF format is used
instead.

Generating Verification Reports
You can generate reports for any verification results using the PolySpace
Report Generator.

To generate a verification report:

1 Open your verification results in the Viewer.

2 Select Reports > Run Report.

The Run Report dialog box opens.

4-35

4 Reviewing Verification Results

3 Select the type of report you want to run in the Select Report Template
section.

4 Select the Output folder in which to save the report.

5 Select the Output format for the report.

6 Click Run Report.

The software creates the specified report.

4-36

5

Checking Compliance with
Coding Rules

• “About This Tutorial” on page 5-2

• “Setting Up Coding Rules Checking” on page 5-3

• “Running a Verification with Coding Rules Checking” on page 5-10

5 Checking Compliance with Coding Rules

About This Tutorial

In this section...

“Overview” on page 5-2

“Before You Start” on page 5-2

Overview
PolySpace software allows you to analyze code to demonstrate compliance
with established C++ coding standards (MISRA C++:2008 or JSF++:2005).

Applying coding rules can both reduce the number of orange checks in your
verification results, and improve the quality of your code. Coding rules are
the most efficient way to reduce orange checks.

To check compliance with coding rules, you set an option in your project and
then run a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all coding rule
violations, you run the verification again.

For more information on the coding rules checker, see “Checking Coding
Rules”in the PolySpace Products for C++ User’s Guide.

In this tutorial, you learn how to:

1 Set an option for checking JSF++ compliance.

2 Select JSF++ rules to check.

3 Run a verification with JSF++ checking.

Before You Start
For this tutorial, you check the JSF++ compliance of the file training.cpp,
using the project that you created in Chapter 2, “Setting Up a Project File”.

5-2

Setting Up Coding Rules Checking

Setting Up Coding Rules Checking

In this section...

“Opening the Example Project” on page 5-3

“Setting the JSF++ Checking Option” on page 5-3

“Creating a JSF++ Rules File” on page 5-4

“Excluding Files from JSF++ Checking” on page 5-7

“Configuring Text and XML Editors” on page 5-8

“Saving the Project with a New Name” on page 5-9

Opening the Example Project
For this tutorial, you modify the project in training.cfg to include JSF++
checking and save the project with a new name. You use the Launcher to
modify the project.

To open the Launcher:

• Double-click the Launcher icon.

To open training.cfg:

1 Select File > Open project.

The Please select a file dialog box opens.

2 In Look in, navigate to polyspace_project.

3 Select training.cfg.

4 Click Open to open the file and close the dialog box.

Setting the JSF++ Checking Option
You set up JSF++ checking by selecting an option and then selecting the rules
to check. To set the JSF++ checking option:

5-3

5 Checking Compliance with Coding Rules

1 In the Analysis options, select Compliance with standards > Coding
rules checker.

The software displays the JSF C++ rules checker options,
-jsf-coding-rules and -includes-to-ignore.

These options allow you to specify which rules to check and any files to
exclude from the checker.

2 Select the Check JSF C++: rules check box.

Creating a JSF++ Rules File
You must have a rules file to run a verification with JSF++ checking. You
can use an existing file or create a new one. You create a new rules file for
this tutorial by:

• “Opening a New Rules File” on page 5-4

• “Setting All the Rules to Off” on page 5-6

• “Selecting the Rules to Check ” on page 5-6

Opening a New Rules File
To open a new rules file:

To create a new rules file:

1 Click the browse button to the right of the JSF C++ rules
configuration option.

The New File window opens, allowing you to create a new JSF++ rules
file, or open an existing file.

5-4

Setting Up Coding Rules Checking

For each JSF++ rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when this rule is violated.

Warning Display warning message and continue verification
when this rule is violated.

Off Skip checking of this rule.

5-5

5 Checking Compliance with Coding Rules

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

Setting All the Rules to Off
Because this tutorial checks only a few rules, first set the state of all rules to
Off. Later, you select the rules to check.

To set the state of all rules to Off:

1 From the Set the following state to all Jsf menu, select Off .

2 Click Go.

Selecting the Rules to Check
To select the rules to check for this tutorial:

1 Expand the set of rules named Type Conversions - Rules 177 to 185.

2 Select the Warning column for rule 180.

3 Expand the set of rules names Flow Control Structures - Rules 186
to 201.

4 Select the Error column for rule 191.

5 Click OK to save the rules and close the window.

The Save as dialog box opens.

6 In File, enter jsf.txt

7 Click OK to save the file and close the dialog box.

5-6

Setting Up Coding Rules Checking

Excluding Files from JSF++ Checking
You can exclude files from JSF++ checking. You might want to exclude some
included files. To exclude math.h from the JSF++ checking of the project
training.cfg:

1 Click the button to the right of the Files and folders to ignore option.

The Files and folders to ignore (includes-to-ignore) dialog box opens.

2 Click the folder icon.

The Select a file or folder to include dialog box appears.

3 Navigate to the polyspace_project folder.

4 Select the includes folder.

5 Click OK.

The includes folder appears in the list of files to ignore.

6 Click OK to close the dialog box.

5-7

5 Checking Compliance with Coding Rules

Configuring Text and XML Editors
Before you check JSF++ rules, you should configure your text and XML
editors in the Launcher. Configuring text and XML editors allows you to view
source files and JSF reports directly from the JSF log in the Launcher.

To configure your text and .XML editors:

1 Select Edit > Preferences.

The Preferences dialog box opens.

2 Select the Editors tab.

The Editors tab opens.

3 Specify an XML editor to use to view JSF++ reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

5-8

Setting Up Coding Rules Checking

4 Specify a Text editor to use to view source files from the Launcher logs.
For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 Specify command line arguments for the text editor. For example:

$FILE

6 Click OK.

Saving the Project with a New Name
You save the project with a new name so that you do not modify training.cfg.
To save the project with the name jsf_training.cfg:

1 Select File > Save as new project.

2 In the Save the project as dialog box, navigate to polyspace_project.

3 Enter jsf_training for the Session identifier and *cfg for the type.

4 Click OK to close the dialog box.

5-9

5 Checking Compliance with Coding Rules

Running a Verification with Coding Rules Checking

In this section...

“Starting the Verification” on page 5-10

“Examining the JSF Log” on page 5-11

“Opening JSF Report” on page 5-12

Starting the Verification
When you run a verification with the Check JSF C++ rules option selected,
the verification checks most of the JSF++ rules during the compile phase. If
there is a violation of a rule with state Error, the verification stops.

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

1 Click the Start button .

2 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The verification fails because of JSF++ violations. A message dialog box
appears.

5-10

Running a Verification with Coding Rules Checking

3 Click OK.

Examining the JSF Log
To examine the JSF++ violations:

1 Click the JSF C++ button in the log area of the Launcher window.

A list of JSF++ violations appear in the log part of the window.

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

5-11

5 Checking Compliance with Coding Rules

The log reports a violation of rule 191. A break statement is used in
training.cpp.

3 Right click the row containing the violation of rule 191 , then select Open
Source File.

The training.cpp file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 5-8.

4 Correct the JSF++ violation and run the verification again.

The verification will complete, and the results will be the same as those
from the tutorial in Chapter 3, “Running a Verification”.

Opening JSF Report
After you check JSF++ rules, you can generate an XML report containing all
the errors and warnings reported by the JSF C++ checker.

Note You must configure an XML editor before you can open a JSF report.
See “Configuring Text and XML Editors” on page 5-8..

To view the JSF report:

1 Click the JSF button in the log area of the Launcher window.

5-12

Running a Verification with Coding Rules Checking

A list of JSF++ violations appears in the log part of the window.

2 Right click any row in the log, and select Open JSF Report.

The report opens in your XML editor.

5-13

5 Checking Compliance with Coding Rules

5-14

6

Using a PolySpace Project
Model File

• “About This Tutorial” on page 6-2

• “Creating a New PolySpace Project Model File” on page 6-3

• “Creating a Configuration File from a PolySpace Project Model File” on
page 6-9

• “Deleting a Generic Target from the Preferences” on page 6-12

6 Using a PolySpace® Project Model File

About This Tutorial

In this section...

“Overview” on page 6-2

“Before You Start” on page 6-2

Overview
A PolySpace project model file provides a way to save generic targets with
project information. Although you can populate a project with information,
such as source files and project options, from a project model file, you cannot
run a verification with a project model file. You must have a configuration file
to run a verification. In this tutorial, you learn how to:

1 Create a new project model file.

2 Define a generic target and save it in the project model file.

3 Create a configuration file from a project model file.

4 Delete a generic target from the Launcher preferences.

Before You Start
Before you start this tutorial, you must complete Chapter 2, “Setting Up a
Project File”to learn about configuration files and basic Launcher operations.

6-2

Creating a New PolySpace® Project Model File

Creating a New PolySpace Project Model File

In this section...

“What Is a PolySpace Project Model File?” on page 6-3

“Creating the PolySpace Project Model File” on page 6-3

What Is a PolySpace Project Model File?
A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (.ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

3 A developer opens the .ppm file. From this file, PolySpace software
populates the project parameters and the generic targets in the preferences.

4 The developer adds source files, include folders, and a results folder to the
project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating the PolySpace Project Model File
You use the PolySpace Launcher to create a PolySpace project model file.
Creating a project model file involves:

• “Opening a New Project” on page 6-4

• “Examining the Preferences Before Adding the Generic Target” on page 6-4

• “Defining the Generic Target” on page 6-5

• “Examining the Preferences After Adding the Generic Target” on page 6-7

• “Saving the PolySpace Project Model File” on page 6-8

6-3

6 Using a PolySpace® Project Model File

Opening a New Project
To open a new project:

1 Open the PolySpace Launcher by double-clicking the Launcher icon on
your desktop.

2 If the PolySpace Language Selection dialog box appears, select
PolySpace for C/C++ and click OK.

3 Select File > New Project.

4 In the Choose the language dialog box, select CPP and click OK to
close the dialog box.

Examining the Preferences Before Adding the Generic Target
In this step, you look at the generic targets in the preferences before you add
a generic target. Unless you previously added a generic target, the generic
targets list is empty. Later, after you add a generic target, when you look at
the generic targets in the preferences again, you will see that the generic
target you added is in the list.

To look at the generic targets in the preferences:

1 Select Edit > Preferences.

The Preferences dialog box appears.

6-4

Creating a New PolySpace® Project Model File

2 Select the Generic targets tab.

Unless you previously added generic targets to your preferences, the
generic targets list is empty.

3 Click Cancel to close the dialog box.

Defining the Generic Target
To define a generic target:

1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

6-5

6 Using a PolySpace® Project Model File

3 Select mcpu...(Advanced).

The Generic target options dialog box appears.

4 In Enter the target name, type target1.

6-6

Creating a New PolySpace® Project Model File

5 Click Save to save the generic target options and close the dialog box.

Examining the Preferences After Adding the Generic Target
Now when you look at the generic targets in the preferences, you should see
the generic target that you added. To look at the generic targets list in the
preferences:

1 Select Edit > Preferences.

The Preferences dialog box appears.

2 Select the Generic targets tab.

Notice that target1 appears in the generic targets list:

3 Click Cancel to close the dialog box.

6-7

6 Using a PolySpace® Project Model File

Saving the PolySpace Project Model File
To save the PolySpace project model file:

1 Select File > Save project.

The Save the project as dialog box appears.

2 Select *.ppm from the Files of type menu.

3 In Session identifier, enter target_training.

4 Click OK to save the file and close the dialog box.

Warning The generic target that you defined in this tutorial
remains in your preferences until you delete it. Be sure to complete
the section “Deleting a Generic Target from the Preferences” on page
6-12 at the end of this tutorial.

6-8

Creating a Configuration File from a PolySpace® Project Model File

Creating a Configuration File from a PolySpace Project
Model File

In this section...

“Why You Must Have a Configuration File” on page 6-9

“Opening the Project Model File” on page 6-9

“Entering Additional Required Information” on page 6-10

“Saving the Configuration File” on page 6-10

Why You Must Have a Configuration File
In the first part of this tutorial, you created a project model file. To run a
verification, you must have a configuration file. In this part of the tutorial,
you create a configuration file from the project model file that you created
earlier. The workflow is:

1 Open the project model file. Opening the project model file populates the:

• Generic targets in the preferences

• Analysis options and other project information

2 Enter additional information, such as the results folder and source files.

Note If you enter the results folder and source files in the project before
you save it as a PolySpace project model file, then that information is saved
in the file and appears in the project when you open the file.

3 Save the configuration file.

Opening the Project Model File
To open the project model file:

1 Select File > Open project.

The Please select a file dialog box appears.

6-9

6 Using a PolySpace® Project Model File

2 Navigate to the polyspace_project folder.

3 In File of type:, select Project Model (*.ppm) files from the menu.

4 Select target_training.ppm and click Open.

A message appears telling you that this project has no source files.

5 Click OK to close the message dialog box.

Entering Additional Required Information
A configuration file must specify the source files and results folder.

To complete the required project information:

• In Results Folder, enter the results folder that you created. For the
example in this guide, it is C:\polyspace_project\results.

• Add C:\polyspace_project\sources\training.cpp to the source files.

• Add C:\polyspace_project\includes to the include folders.

Note For more information about adding source files and include folders to
a project, see “Creating a New Project to Verify a Class in the Training C++
File” on page 2-9.

Saving the Configuration File
To save the configuration file:

1 Select File > Save project.

The Save the project as dialog box appears.

2 Navigate to the polyspace_project folder.

3 In Session identifier, enter training2.

4 Leave the default type as *.cfg.

6-10

Creating a Configuration File from a PolySpace® Project Model File

5 Click OK to save the project and close the dialog box.

Note Your preferences still include the generic target target1 . Complete
“Deleting a Generic Target from the Preferences” on page 6-12 to delete this
generic target from your preferences.

6-11

6 Using a PolySpace® Project Model File

Deleting a Generic Target from the Preferences

In this section...

“Understanding the Generic Targets Preference” on page 6-12

“Deleting the Generic Target Added in This Tutorial” on page 6-12

Understanding the Generic Targets Preference
The list of generic targets is stored as a PolySpace software preference. You
can add generic targets to the list in one of these ways:

• Edit the preferences using the PolySpace Launcher.

• Open a PolySpace project model file that includes generic targets.

The generic targets remain in your preferences until you delete them. You
should delete the generic target that you defined and added to you preferences
earlier in this tutorial.

Deleting the Generic Target Added in This Tutorial
To delete the generic target target1 from your preferences:

1 In Analysis options, expand Target/Compilation.

2 If Target processor type is target1, change it to sparc (You cannot
delete a generic target if it is the target processor type for the current
project.)

3 Select Edit > Preferences.

The Preferences dialog box appears.

4 Select the Generic targets tab.

5 Select target1 from the list.

6 Click Remove.

7 Click OK to apply the change and close the dialog box.

6-12

Deleting a Generic Target from the Preferences

Note You removed the generic target target1 from your preferences,
but it is still in target_example.ppm. If you save the current project in
target_example.ppm, then target_example.ppm will no longer include
target1.

6-13

6 Using a PolySpace® Project Model File

6-14

Index

IndexA
active project

definition 3-15
setting 3-15

analysis options 2-14
generic targets 6-5
JSF++ compliance 5-3

ANSI compliance 3-5
assistant mode

criterion 4-28
custom methodology 4-32
methodology 4-28
methodology for C++ 4-28
overview 4-27
reviewing checks 4-30
selection 4-27
use 4-27 4-30

C
call graph 4-12
call tree view 4-5
calling sequence 4-12
cfg. See configuration file
client 1-5 3-2

installation 1-6
verification on 3-25

coding review progress view 4-5 4-13
color-coding of verification results 1-2 4-7
compile log

Launcher 3-26
Spooler 3-7

compile phase 3-5
compliance

ANSI 3-5
JSF C++ 5-1

composite filters 4-21
configuration file

definition 2-3
custom methodology

definition 4-32

D
default folder

changing in preferences 2-7
desktop file

definition 2-3
division by zero

example 4-19
downloading

results 3-10
dsk. See desktop file

E
expert mode

filters 4-20
composite 4-21
individual 4-25

overview 4-10
selection 4-10
use 4-10

F
files

includes 2-11
results 2-11
source 2-11

filters 4-20
alpha 4-21
beta 4-21
custom

modification 4-22
use 4-22

gamma 4-21
individual 4-25
user def 4-21

folders
includes 2-11

Index-1

Index

results 2-11
sources 2-11

G
generic target processors

adding 6-4
definition 6-5
deleting 6-12

H
hardware requirements 3-12
help

accessing 1-10

I
installation

PolySpace Client for C/C++ 1-6
PolySpace products 1-6
PolySpace Server for C/C++ 1-6

J
JSF++ compliance

analysis option 5-3
checking 5-1
file exclusion 5-7
log 5-11
rules file 5-4

L
Launcher 1-5

monitoring verification progress 3-26
opening 2-5
starting verification on client 3-25
starting verification on server 3-5
stopping 3-27
viewing logs 3-26

window 2-5
overview 2-5
progress bar 3-26

licenses
obtaining 1-6

logs
compile

Launcher 3-26
Spooler 3-7

full
Launcher 3-26
Spooler 3-7

stats
Launcher 3-26
Spooler 3-7

viewing
Launcher 3-26
Spooler 3-7

M
methodology for C++ 4-28

P
PolySpace Client for C/C++

installation 1-6
license 1-6

PolySpace In One Click
active project 3-15
overview 3-15
sending files to PolySpace software 3-17
starting verification 3-17
use 3-15

PolySpace products for C++
components 1-5
installation 1-6
licenses 1-6
overview 1-2
related products 1-11

Index-2

Index

user interface 1-5
workflow 1-7

PolySpace project model file
creation 6-3
definition 6-3
overview 6-2
use 6-1

PolySpace Queue Manager Interface. See Spooler
PolySpace Server for C/C++

installation 1-6
license 1-6

ppm. See PolySpace project model file
preferences

Launcher
default folder 2-7
default server mode 3-5
generic targets 6-4
server detection 3-13

Viewer
assistant configuration 4-28

procedural entities view 4-5
reviewed column 4-15

product overview 1-2
progress bar

Launcher window 3-26
project

creation 2-3 2-9
definition 2-3
file types

configuration file 2-3
desktop file 2-3
PolySpace project model file 2-3

folders
includes 2-4
results 2-4
sources 2-4

opening 3-4
saving 2-17

project model file. See PolySpace project model
file

R
related products 1-11

PolySpace products for linking to
Models 1-11

PolySpace products for verifying Ada
code 1-11

PolySpace products for verifying C code 1-11
reports

generation 4-34
results

downloading from server 3-10
folder 2-11
opening 4-4
report generation 4-34
reviewing 4-1

reviewed column 4-15
rte view. See procedural entities view

S
selected check view 4-5
server 1-5 3-2

detection 3-13
information in preferences 3-13
installation 1-6 3-13
verification on 3-5

source code view 4-5
Spooler 1-5

monitoring verification progress 3-7
removing verification from queue 3-10
use 3-7
viewing log 3-7

T
troubleshooting failed verification 3-12

U
unreachable code

Index-3

Index

example 4-17

V
variables view 4-5
verification

Ada code 1-11
C code 1-11
C++ code 1-2
client 3-2
compile phase 3-5
failed 3-12
monitoring progress

Launcher 3-26
Spooler 3-7

phases 3-5
results

color-coding 1-2
opening 4-4
report generation 4-34
reviewing 4-1

running 3-2
running on client 3-25
running on server 3-5

starting
from Launcher 3-2 3-5 3-25
from PolySpace In One Click 3-2 3-17

stopping 3-28
troubleshooting 3-12
with JSF++ checking 5-10

Viewer 1-5
modes 4-3

selection 4-3
opening 4-3
window

call tree view 4-5
coding review progress view 4-5
overview 4-5
procedural entities view 4-5
selected check view 4-5
source code view 4-5
variables view 4-5

W
workflow

basic 1-7
in this guide 1-8

Index-4

	toc
	Introduction to PolySpace Products for Verifying C++ Code
	Product Overview
	Ensures Software Reliability
	Decreases Development Time
	Improves the Development Process

	Product Components
	Installing PolySpace Products
	Finding the Installation Instructions
	Obtaining Licenses for PolySpace Client for C/C++ and PolySpace

	Working with PolySpace Software
	Basic Workflow
	The Workflow in This Guide
	Working with PolySpace Project Model Files

	Learning More
	Product Help
	The MathWorks Online

	Related Products
	PolySpace Products for Verifying C Code
	PolySpace Products for Verifying Ada Code
	PolySpace Products for Linking to Models

	Setting Up a Project File
	About This Tutorial
	Overview
	Example Files

	Creating a New Project
	What Is a Project?
	Preparing the Project Folders
	Opening the PolySpace Launcher
	Changing the Default Folder
	Creating a New Project to Verify a Class in the Training C++ Fil
	Opening a New project
	Specifying the Source Files, Include Folders, and Results Folder
	Specifying the Analysis Options
	Saving the Project

	Running a Verification
	About This Tutorial
	Overview
	Before You Start

	Opening the Project
	Using the Launcher to Start a Verification That Runs on a Server
	Starting the Verification
	Monitoring the Progress of the Verification
	Downloading Results from the Server to the Client
	Troubleshooting a Failed Verification
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	PolySpace Software Cannot Find the Server

	Using PolySpace In One Click to Start a Verification That Runs o
	Overview of PolySpace In One Click
	Setting the Active Project
	Sending the Files to PolySpace Software

	Using the Launcher to Start a Verification That Runs on a Client
	Starting the Verification
	Monitoring the Progress of the Verification
	Completing the Verification and Stopping the Launcher
	Stopping the Verification Before It Completes

	Reviewing Verification Results
	About This Tutorial
	Overview
	Before You Start

	Opening the Viewer and the Verification Results
	Opening the Viewer
	Selecting the Viewer Mode
	Opening the Results

	Exploring the Viewer Window
	Overview
	Reviewing the Procedural Entities View

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Reviewing Checks in Expert Mode
	Selecting a Check to Review
	Displaying the Calling Sequence
	Tracking Review Progress
	Tracking Reviewed Checks in Procedural Entities View

	Reviewing Additional Examples of Checks
	Example: Unreachable Code
	Example: A Function with No Errors
	Example: Division by Zero

	Filtering the Types of Checks That You See
	Using Composite Filters
	Using the Custom Filter
	Using Individual Filters

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for C++
	Reviewing Checks
	Defining a Custom Methodology

	Generating Reports of Verification Results
	PolySpace Report Generator Overview
	Generating Verification Reports

	Checking Compliance with Coding Rules
	About This Tutorial
	Overview
	Before You Start

	Setting Up Coding Rules Checking
	Opening the Example Project
	Setting the JSF++ Checking Option
	Creating a JSF++ Rules File
	Opening a New Rules File
	Setting All the Rules to Off
	Selecting the Rules to Check

	Excluding Files from JSF++ Checking
	Configuring Text and XML Editors
	Saving the Project with a New Name

	Running a Verification with Coding Rules Checking
	Starting the Verification
	Examining the JSF Log
	Opening JSF Report

	Using a PolySpace Project Model File
	About This Tutorial
	Overview
	Before You Start

	Creating a New PolySpace Project Model File
	What Is a PolySpace Project Model File?
	Creating the PolySpace Project Model File
	Opening a New Project
	Examining the Preferences Before Adding the Generic Target
	Defining the Generic Target
	Examining the Preferences After Adding the Generic Target
	Saving the PolySpace Project Model File

	Creating a Configuration File from a PolySpace Project Model Fil
	Why You Must Have a Configuration File
	Opening the Project Model File
	Entering Additional Required Information
	Saving the Configuration File

	Deleting a Generic Target from the Preferences
	Understanding the Generic Targets Preference
	Deleting the Generic Target Added in This Tutorial

	Index

